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Structure functions in the stochastic Burgers equation

F. Hayot and C. Jayaprakash
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 20 December 1996

We study analytically and numerically structure functidgr) in the one-dimensional Burgers equation,
driven by noise with variance |k|# in Fourier space(a) when the noise is cut off at some lendth and(b)
when it is not. We present exact relations satisfie®fly) (the von Karman—Howarth relatipandS,(r) that
form the basis of our analysis. When there is a cutoff length, shocks occugnik<r for q=2 for 6<r
<l. where § is the shock thickness for a§ between—1 and 2. We deduce this behavior from the exact
relations along with an ansatz that is verified numerically. When there is no cutoff length, multifractal behavior
is known to occur only whe<0. Through a study of exact expressinwe highlight the difference between
multifractality in this case as compared to the case with a cUiBff063-651X97)02807-9

PACS numbd(s): 05.45+b

Scaling and multifractality in extended dynamical systemsKarman—Howarth relatiofi7] for S;(r), and the next rela-
is an important area of study. An issue of interest is thetion in an infinite hierarchy of such equations for the struc-
mechanism for such behavior in driven, deterministic versusure functions. These illuminate the origin and limits of va-
stochastic systems. The possibility of describing determinishdity of multifractality in the stochastic Burgers equation for
tic partial differential equation€PDES by effective stochas- noise variances with or without a cutoff.
tic equations on appropriate length scales raises important We assume that asymptotically the system reachtsa
related questions. The exploration of these questions is obvporally) steady state that is spatially homogeneous upon av-
ously easier in one spatial dimension. The stochastic Burgewrsraging over noise. In this case the von Karman—Howarth
[1] equation is a simple stochastic PDE that has attractecklation[7] can be derived easily from the equation of mo-
wide attention recently to explore various of these issuesion; the deterministic case is discussed, for example, in Ref.

[2-5]. The one-dimensional equation reads [8]. We obtain
aul gt+udul ax=vVau+ 7, (1) dsSs(r)
ar = SUGILn(x+r)+p(x=1)])
where u(x,t) is the velocity field, v the viscosity, and
7n(x,t) a Gaussian noise, of zero mean, with a variance in d?
Fourier space given by “lv g (UOX)U(X+T)). 4
(n(k) (k")) =D(K)drir 08(t—t"), (20 We can use the results of Novikov and Donske} for a

Gaussian random ensemble that impl(k) 7(—k))
=1D(k) and rewrite the above relation in the following use-
ful form:

1dS(r)  d?’Sy(r) 1
For the stochastic Burgers equation, the connection between 6 dr =~ dr? L?
multifractality—the fact that thé, do not grow linearly with
g—and the presence of shocks in the velocity field has bee@bserve that the sum doof the noise variance can depend
investigated earlier: We know from our previous studigs  on the ultraviolet cutoff when the noise itself occurs at all
that, wheng in Eq. (2) is positive (0<3<2) multifractal ~ scales.
behavior does not occur and velocity profiles from numerical We can similarly derive an exact relatiovalid for noise
simulations show no evidence for shocks, whereas botwith and without cutoff between the four- and three-point
shocks and multifractality occur fg8 negative(—1=<8<0).  functions, that is, the next one in an infinite hierarchy of such
The result aj3=—1 has been obtained first by Chekhlov and equations. This can be derived by considering the time de-
Yakhot [2]. We also know from the work of Bouchaud, rivative of (U?(x;)u(x,)—u(x;)u?(X,)) where x;=x+r
Mézard, and Paridi4] that (for high space dimensiorwhen — andx,=x, using the equation of motion and averaging over
B=2 and there is, moreover, a cutoff lendth multifracta-  space and the Gaussian noise ensemble. We exhibit below a
lity occurs for distances much smaller thap. Analytic particular version that can be recast into other interesting
work based on field-theoretic methods has been pursued fierms by algebraic manipulations:
Ref.[5]. 1 dS(r)
We present here the results of an analytic and numerical u(l) 2 2 _ 2
study of multifractal behavior for noises of the foi@. We 6 dr (L93u(x0) = dRUOxz) JLu(xy) ~u(x2) 1.
give an extensive discussion based on the analog of the von (6)

wherelﬁ(k)=2DO|k|B. For the determination of multifrac-
tality, the principal object of study is the structure function

Sy(r)={[u(x+r,t)—u(x,t)]%~ra. 3

; D(k)cokr. (5
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In the precedingg, represents/Jx,, etc. We draw attention Sa(r)=—12¢,r/L, 9)
to the fact that the noise term does not contribute to this

equation: the derivation leads to terms of the fo{m(x where e,=(1/2L)3,D(k) is the total rate of energy input.

+r)u?(x)) which can be argued to vanish. The proportionality factor in Eq9) agrees with the numeri-
The infinite hierarchy can be obtained by considering thecal results within about 20%. We can show that the linearity

time derivative of the generating functige®V1~42)) fora  of S;(r) corresponds to the energy flux knspace being a

real constana. This leads to constant and thus the “mechanism” is similar to the case of

the Navier-Stokes equation with nhonrandom forcing.
i o z a(u;—u,) Our result in Eq.(9) is in agreement with the result of
dr\ (Y172 3¢ ) Polyakov[5] obtained by pointsplitting methods in the limit
v—0. We have presented the more general reldtiem (5)]

= v{a((92u,— d5u,)ed U1~ 12)) and specified the conditions under which the linearitySgf
obtains.
+a%((91ug) %+ (dpUp) ) (€217 12))} We considerS, and S, next. The even-numbered struc-
a2 ture functions are even in and increase nonanalytically as
- Ek D(k)cog kr)(ed(U1~u2)y, (7)  Irl. We explore this behavior analytically next.

The equation of motion, Eq1), automatically yields en-

] ] ) ergy conservation: the energy supplied by the stochastic
We will use these relations and plausible arguments to elupgjse is dissipated by the action of viscosity.

cidate the behavior of the structure functidBgr), Ss(r),

andS,(r), in the limit of »—0 and comment on higher-order v oinn 1 - -
structure functions. T EK k Uk u(—k)=5- % D(k)<Dg(1M1) 7.
(10
NOISE WITH CUTOFF
. . . Note that energy input is independent of short-distance be-
We_consujer the case where there is a cupil <L) in havior and depends only dn. In the inertial range both
the noise variance (k) =0 for |k|>2/l. We assume that scoys dissipation and energy input due to the stochastic

as the system size increases, the cutoff scale also increasggiying are negligible. The energy cascades to smaller scales
We find numerically that multifractality occurs in the inertial

range delineated by length scales smaller thanthe scale
set by the noise cutoff and larger than the shock thickidess
whatever the value oB8 between 2 and-1. In particular,
Sy(r) varies linearly withr for q=2. We used a pseudospec-
tral code as described in RdB] to solve the equation nu-
merically. In Fig. 1a) S,(r) and|Ss(r)| are displayed and in
Fig. 1(b) Sy(r) is plotted as a function af for B=—3. The
numerical results are consistent with linear behavior in the
inertial range. We have checked that similar results are ob-
tained forB=3 and 3=2 and largeny. For distances smaller
than &, the structure functions show the expected Gaussiar
behavior. We provide below a theoretical understanding of
the results in the inertial range.

In the limit of »—0, which we consider in the ensuing
discussion, the shock thickneéss of the order ofv/V [8]
whereV is the characteristic velocity scale, typical of the 0.06
“jump” across the shock. In this case, the first term in Eq. 0.05
(5) proportional tor does not contribute in the inertial range.
(On the other hand, for—0, the two terms cancel each
other; see later for more comments on this teffinus in the 0.03
region where shocks dominate the von Karman—Howarth re- 0.02
lation yields

0.12 T T T T T T T

[S3(r)], Sa(r)

0.04

Sa(r)

0.01

dSy(r) 1 % . 1 % . 0
ar =—6sz D(k)cos<r~—epk2 D(k),
8

=Kmin =Kmin
] FIG. 1. (@ The structure functionSs(r)| (lower line) and
wherek.=2m/l; denotes the upper cutoff ik spacekmin  s,(r) (upper lin vsr showing linearity in the inertial range. Dis-
=2m/L. Forr in the inertial range <l., we also havek  tances are measured in units in which the system size=i$024.
<27 in the argument of the cosine and the second approxiThere is a smooth cutoff &.=4(2w/L). We have use@=—0.5,
mate equality in Eq(8) follows. Integrating the equation »=0.05, andD=2.0x10"°. (b) S,(r) vs r. The linearity in the
yields inertial range is evident.
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FIG. 2. The energy spectruu(k)u(—k)) vs k for the same 45 T ; T 1
system as in Fig. 1 on a log-log plot. The wave vedtads in units BE O+ .
of the basic interval irk space, 2r/L. The dashed line has a slope € 55 b _
of —2. This leads t&5,(r)«|r| as discussed in the text and seen in i i
Fig. 1(a). = °r
% 6.5 [ -
and we can define a dissipation wave numigrat which £ TE .
the dissipation defined by 1 dk K(T(k)d(—k)) be- : st -
comes comparable to the energy flux. Substituting the scal ~ g .
ing form (G(k)U(—k))e|k| ¢ yields the dissipatiorfup to 85
Kg) proportional tovK3~¢; since this is comparable to the 0 : Y sk 25

energy flux that is independent &f;, we conclude thav

«K§™3. If we now make the reasonable identification of the g 3. (@) log;mC4(k.K) vs logygk. The three-point function is
inverse of the dissipation wave number or the dissipationyefined in the text. The dashed line corresponds to a slopeSais
scale with the shock thickness, we obtainve 82~ ¢. Now predicted by our ansatz in Eq12). (b) log;dmCs(k,g=4A) vs
the shock thickness vanishes in the zero viscosity limit, asog,;k where A=2#/L is the interval ink space. Note that the
mentioned earlier, ag/V. This allows one to deduce that slope of the dashed line is2. The slope of the graph deviates from
6=2 and therefore —2 ask becomes comparable tpas predicted by the ansatz.

(Qk)T(—K))yoe[k| 2. AsV3

Im[{Q(k)a(a)u(—k—a))]= Kqk Q)"
We have checked this expectation numerically; the exponent
—2 gives a very good fit to the data for the energy spectrum The  gtructure  function S; is  related  to
shown in F|g. 2. We emphasize that we _determllne the e_""?(ﬁ(k)ﬁ(q)ﬁ(—k—q)) by Fourier transformation. Using Eq.
nent governing the energy spectrum by identifying the dissit17) it is easy to verify that the leading behavior is given by
patllon sc_:ale with the shock thickness and using the way I (r)=— A;V3(r/L). This confirms that the ansatz correctly
which this scale depends onfgr sémall V. reproduces the known result. One can use the ansatz in
The form(u(k)u(—k))=AV=/k* for the energy spectrum gq (11) and after some algebraic manipulations find a
obtained above leads directly to linearity 8§(r) in the _independent contributiondS,/drecc,V4 sgng)/L. This
|nert|aI2 range. Fourier transformation yieldsS;(r)  gives rise to thér| behavior ofS,. Thus we have provided
= (L) 2 u(k)u(—k))2(1—cosr); in the largeL limit,  an analytic understanding of the structure functions for
the leading behavior is given 8, (r)=AV?|r|/L as seen in q=2, 3, and 4.
Fig. 1(a). _ _ We have studiedC;(k,q) numerically and checked that
We next examine the behavior 84(r) and address how  {he results are consistent with our conjectured form: in Fig.
the exact relation Eq6) leads to linear behavior in the in- 3(a) we show InC4(k k) which decreases &s  while in Fig.
ertial range. It is convenient to recast the equation into th%(b) we display InC4(k,q) for a fixedq which for moderate
following form: k's decreases ds 2 as predicted by Eq12).
1dS,(r) 2 d?S; 4iv

(12

s dr =3’ a7 T° kzq Cs(k,q)q(k+q)sin(kr). NOISE WITHOUT CUTOFF

(11) Consider the case in which there is no cutoff, i.e., the

noise variance has the functional fotkj? for all wave vec-

In the preceding we have defined the three-pointors up to the “ultraviolet” cutoff. In this case, the system
correlation function in wave-vector spaceC;5(k,q) behaves differently according to whethgris positive or
=(U(k)U(g)u(—k—q)). Note that only the imaginary part of negative. Wheng is positive there is no multifractality, and
the three-point function contributes to the sum in Ed). In no region where in the von Karman—Howarth relation the
the inertial range, when all the wave vectors are smaller thaterm proportional to viscosity can be neglected. In particular,
21/ 6 and larger than 2/l . we make the following ansatz: in the case8=2, the existence of the fluctuation-dissipation
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theorem leads tqu(k)U(—k))=2Dqy/v and the two terms CONCLUSIONS
in Eq. (5) cancel each other and yieit;/dr=0. Wheng is
negative, multifractality is known to occur, from numerical  In summary, when the Burgers equation is driven with a
simulations, up to distances of the order of system @imeé  stochastic noise at length scales larger than a cutoff, shocks
ited by the average distance between shpcés we have dominate the behavior of the system and multifractality
shown previously 6]. Next we comment on the behavior of [Sq(r)ocréq with £;=1] occurs in the inertial range for all
S, and study analyticallyS; for negative 3 and compare yajues of the exponens that characterizes the form of the
them to the case with a cutoff. . . noise variance. The case Bf2 was studied in Ref4]. We

In contrast to the cutoff case in the earller section, we d%have studied the general case analyticallyder2, 3, and 4;
not know the dependence of the short-distance cutof tn 0 have used knowledge of the scaling of the short-distance
the limit of vanishing viscosity. T_herefore energy b""I‘rjmcecutoff, identified with the shock thickness, with the viscosity
B} argue for the linear behavior whep=2. The linearity of

spectrum(u(k)u(~k)), which in turn determines,(r); in ﬁg(r) follows directly from the noise term, while the linear-

this case as discussed in our earlier work we appeal to renot ¢S deri ¢ the f f the th it functi
malization group calculationgl0] and extrapolate naively Ity Of 54 derves irom the form ot the thrée-point function,

from the 3 positive (0< 3<1.5) regime to negativ@. This for which we have an ansatz in wave-vector space. Our ana-
yields £,= —2/3 and we h;ivéz(r)Nr—2ﬁ/3_ For B=—1 Iytical work is corroborated by numerical simulations. It is

for example,S,(r)~r?2, as pointed out in Ref2] as com- p_ossible to examine Eq.7) gnd analyze the behgvior of
pared with thelr| behavior when there is a cutoff. h|gher-or<_:ier structurg fgnctlon_s. One can plau5|bly argue
The leading behavior 08,(r) in the inertial range for that the linear behavior if$,_, induces linear behavior in
<0 can be determined via the von Karman—Howarth relathe next order structure functid®,(r), as we demonstrated
tion [Eq. (5)]: the viscous term can be neglected since shock§ the case ofS,. We contrasted this linear behavior of
dominate the behavior of the velocity field. When there is noS2(f) and S;(r) with the corresponding behavior in the
cutoff, the upper limit in the integrals in Eq5) is now Mmodel in the absence of a noise cutoff: In our previous work

Kmax=275, where & is the shock thickness. For 1< g [6] we had shown that multifractality occurred only for nega-

<0, it is easy to show that tive values of$ and obtained ,= —28/3 numerically. Here
we have obtained; analytically. The values of, and 5
Ss(r)=sgr(r)|r| 2. (13)  differ from the value of unity that occurs when there is a

. ] cutoff in the noise.
When there is no cutoff, one finds f@=—1 that

Ss(r)~r Injr|, 14

a result used by Chekhlov and YakhH@&]. We emphasize
that when there is no cutoff in the noise there is no value of We thank the Ohio Supercomputer Center for providing
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