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Structure functions in the stochastic Burgers equation
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~Received 20 December 1996!

We study analytically and numerically structure functionsSq(r ) in the one-dimensional Burgers equation,
driven by noise with variance}ukub in Fourier space,~a! when the noise is cut off at some lengthl c , and~b!
when it is not. We present exact relations satisfied byS3(r ) ~the von Karman–Howarth relation! andS4(r ) that
form the basis of our analysis. When there is a cutoff length, shocks occur andSq(r )}r for q>2 for d,r
, l c whered is the shock thickness for allb between21 and 2. We deduce this behavior from the exact
relations along with an ansatz that is verified numerically. When there is no cutoff length, multifractal behavior
is known to occur only whenb,0. Through a study of exact expressionS3 we highlight the difference between
multifractality in this case as compared to the case with a cutoff.@S1063-651X~97!02807-9#

PACS number~s!: 05.45.1b
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Scaling and multifractality in extended dynamical syste
is an important area of study. An issue of interest is
mechanism for such behavior in driven, deterministic ver
stochastic systems. The possibility of describing determi
tic partial differential equations~PDEs! by effective stochas-
tic equations on appropriate length scales raises impor
related questions. The exploration of these questions is o
ously easier in one spatial dimension. The stochastic Bur
@1# equation is a simple stochastic PDE that has attrac
wide attention recently to explore various of these iss
@2–5#. The one-dimensional equation reads

]u/]t1u]u/]x5n¹2u1h, ~1!

where u(x,t) is the velocity field, n the viscosity, and
h(x,t) a Gaussian noise, of zero mean, with a variance
Fourier space given by

^ĥ~k!ĥ~k8!&5D̂~k!dk1k8,0d~ t2t8!, ~2!

where D̂(k)52D0ukub. For the determination of multifrac
tality, the principal object of study is the structure functio

Sq~r !5^@u~x1r ,t !2u~x,t !#q&;r zq. ~3!

For the stochastic Burgers equation, the connection betw
multifractality—the fact that thezq do not grow linearly with
q—and the presence of shocks in the velocity field has b
investigated earlier: We know from our previous studies@6#
that, whenb in Eq. ~2! is positive ~0,b,2! multifractal
behavior does not occur and velocity profiles from numeri
simulations show no evidence for shocks, whereas b
shocks and multifractality occur forb negative~21<b,0!.
The result atb521 has been obtained first by Chekhlov a
Yakhot @2#. We also know from the work of Bouchaud
Mézard, and Parisi@4# that ~for high space dimension! when
b52 and there is, moreover, a cutoff lengthl c , multifracta-
lity occurs for distances much smaller thanl c . Analytic
work based on field-theoretic methods has been pursue
Ref. @5#.

We present here the results of an analytic and numer
study of multifractal behavior for noises of the form~2!. We
give an extensive discussion based on the analog of the
561063-651X/97/56~1!/227~4!/$10.00
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Karman–Howarth relation@7# for S3(r ), and the next rela-
tion in an infinite hierarchy of such equations for the stru
ture functions. These illuminate the origin and limits of v
lidity of multifractality in the stochastic Burgers equation fo
noise variances with or without a cutoff.

We assume that asymptotically the system reaches a~tem-
porally! steady state that is spatially homogeneous upon
eraging over noise. In this case the von Karman–Howa
relation @7# can be derived easily from the equation of m
tion; the deterministic case is discussed, for example, in R
@8#. We obtain

dS3~r !

dr
526^u~x!@h~x1r !1h~x2r !#&

212n
d2

dr2
^u~x!u~x1r !&. ~4!

We can use the results of Novikov and Donsker@9# for a
Gaussian random ensemble that implŷû(k)ĥ(2k)&
51

2D̂(k) and rewrite the above relation in the following us
ful form:

1

6

dS3~r !

dr
5n

d2S2~r !

dr2
2

1

L2 (
k
D̂~k!coskr. ~5!

Observe that the sum onk of the noise variance can depen
on the ultraviolet cutoff when the noise itself occurs at
scales.

We can similarly derive an exact relation~valid for noise
with and without cutoff! between the four- and three-poin
functions, that is, the next one in an infinite hierarchy of su
equations. This can be derived by considering the time
rivative of ^u2(x1)u(x2)2u(x1)u

2(x2)& where x15x1r
andx25x, using the equation of motion and averaging ov
space and the Gaussian noise ensemble. We exhibit bel
particular version that can be recast into other interes
forms by algebraic manipulations:

1

6

dS4~r !

dr
5n^@]1

2u~x1!2]2
2u~x2!#@u~x1!2u~x2!#

2&.

~6!
227 © 1997 The American Physical Society
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228 56F. HAYOT AND C. JAYAPRAKASH
In the preceding,]1 represents]/]x1 , etc. We draw attention
to the fact that the noise term does not contribute to
equation: the derivation leads to terms of the form^h(x
1r )u2(x)& which can be argued to vanish.

The infinite hierarchy can be obtained by considering
time derivative of the generating function^ea(u12u2)& for a
real constanta. This leads to

d

dr K S u12u22
2

aDea~u12u2!&

5n$a^~]1
2u12]2

2u2!e
a~u12u2!&

1a2^~]1u1!
21~]2u2!

2&^ea~u12u2!&%

2
a2

L2 (
k
D̂~k!cos~kr !^ea~u12u2!&. ~7!

We will use these relations and plausible arguments to
cidate the behavior of the structure functionsS2(r ), S3(r ),
andS4(r ), in the limit of n→0 and comment on higher-orde
structure functions.

NOISE WITH CUTOFF

We consider the case where there is a cutoffl c ( l c,L) in
the noise variance:D̂(k)50 for uku.2p/ l c . We assume tha
as the system size increases, the cutoff scale also incre
We find numerically that multifractality occurs in the inerti
range delineated by length scales smaller thanl c , the scale
set by the noise cutoff and larger than the shock thicknesd,
whatever the value ofb between 2 and21. In particular,
Sq(r ) varies linearly withr for q>2. We used a pseudospe
tral code as described in Ref.@6# to solve the equation nu
merically. In Fig. 1~a! S2(r ) anduS3(r )u are displayed and in
Fig. 1~b! S4(r ) is plotted as a function ofr for b521

2. The
numerical results are consistent with linear behavior in
inertial range. We have checked that similar results are
tained forb51

2 andb52 and largerq. For distances smalle
than d, the structure functions show the expected Gauss
behavior. We provide below a theoretical understanding
the results in the inertial range.

In the limit of n→0, which we consider in the ensuin
discussion, the shock thicknessd is of the order ofn/V @8#
whereV is the characteristic velocity scale, typical of th
‘‘jump’’ across the shock. In this case, the first term in E
~5! proportional ton does not contribute in the inertial rang
~On the other hand, forr→0, the two terms cancel eac
other; see later for more comments on this term.! Thus in the
region where shocks dominate the von Karman–Howarth
lation yields

dS3~r !

dr
526

1

L2 (
k5kmin

kc

D̂~k!coskr'26
1

L2 (
k5kmin

kc

D̂~k!,

~8!

wherekc52p/ l c denotes the upper cutoff ink space,kmin
52p/L. For r in the inertial ranger! l c , we also haverk
!2p in the argument of the cosine and the second appr
mate equality in Eq.~8! follows. Integrating the equation
yields
is

e

u-

es.

e
b-

n
f

.

e-

i-

S3~r !5212e0r /L, ~9!

wheree0[(1/2L)(kD̂(k) is the total rate of energy input
The proportionality factor in Eq.~9! agrees with the numeri
cal results within about 20%. We can show that the linea
of S3(r ) corresponds to the energy flux ink space being a
constant and thus the ‘‘mechanism’’ is similar to the case
the Navier-Stokes equation with nonrandom forcing.

Our result in Eq.~9! is in agreement with the result o
Polyakov@5# obtained by pointsplitting methods in the lim
n→0. We have presented the more general relation@Eq. ~5!#
and specified the conditions under which the linearity ofS3
obtains.

We considerS2 andS4 next. The even-numbered struc
ture functions are even inr and increase nonanalytically a
ur u. We explore this behavior analytically next.

The equation of motion, Eq.~1!, automatically yields en-
ergy conservation: the energy supplied by the stocha
noise is dissipated by the action of viscosity.

n

L (
k
k2^û~k!û~2k!&5

1

2L (
k
D̂~k!}D0~1/l c!

11b.

~10!

Note that energy input is independent of short-distance
havior and depends only onl c . In the inertial range both
viscous dissipation and energy input due to the stocha
driving are negligible. The energy cascades to smaller sc

FIG. 1. ~a! The structure functionuS3(r )u ~lower line! and
S2(r ) ~upper line! vs r showing linearity in the inertial range. Dis
tances are measured in units in which the system size isL51024.
There is a smooth cutoff atkc54(2p/L). We have usedb520.5,
n50.05, andD52.031026. ~b! S4(r ) vs r . The linearity in the
inertial range is evident.



ca

e

he
io

a
t

e
um
p
s
y

-
th

in

f

ha
:

.
by
ly
z in
a

for

t
ig.

he

m

he
lar,
n

e
in

m

56 229STRUCTURE FUNCTIONS IN THE STOCHASTIC . . .
and we can define a dissipation wave numberKd at which
the dissipation defined by 2n*0

Kddk k2^û(k)û(2k)& be-
comes comparable to the energy flux. Substituting the s
ing form ^û(k)û(2k)&}uku2z yields the dissipation~up to
Kd! proportional tonKd

32z ; since this is comparable to th
energy flux that is independent ofKd , we conclude thatn
}Kd

z23. If we now make the reasonable identification of t
inverse of the dissipation wave number or the dissipat
scale with the shock thickness,d, we obtainn}d32z. Now
the shock thickness vanishes in the zero viscosity limit,
mentioned earlier, asn/V. This allows one to deduce tha
d52 and therefore

^û~k!û~2k!&}uku22.

We have checked this expectation numerically; the expon
22 gives a very good fit to the data for the energy spectr
shown in Fig. 2. We emphasize that we determine the ex
nent governing the energy spectrum by identifying the dis
pation scale with the shock thickness and using the wa
which this scale depends onn for small n.

The form^û(k)û(2k)&5AV2/k2 for the energy spectrum
obtained above leads directly to linearity ofS2(r ) in the
inertial range. Fourier transformation yieldsS2(r )
5(1/L2)(k^û(k)û(2k)&2(12coskr); in the largeL limit,
the leading behavior is given byS2(r )5AV2ur u/L as seen in
Fig. 1~a!.

We next examine the behavior ofS4(r ) and address how
the exact relation Eq.~6! leads to linear behavior in the in
ertial range. It is convenient to recast the equation into
following form:

1

6

dS4~r !

dr
5
2

3
n
d2S3
dr2

2
4in

L3 (
k,q

C3~k,q!q~k1q!sin~kr !.

~11!

In the preceding we have defined the three-po
correlation function in wave-vector spaceC3(k,q)
[^û~k!û(q)û~2k2q!&. Note that only the imaginary part o
the three-point function contributes to the sum in Eq.~11!. In
the inertial range, when all the wave vectors are smaller t
2p/d and larger than 2p/ l c we make the following ansatz

FIG. 2. The energy spectrum̂û(k)û(2k)& vs k for the same
system as in Fig. 1 on a log-log plot. The wave vectork is in units
of the basic interval ink space, 2p/L. The dashed line has a slop
of 22. This leads toS2(r )}ur u as discussed in the text and seen
Fig. 1~a!.
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Im@^û~k!û~q!û~2k2q!&#5
A3V

3

kq~k1q!
. ~12!

The structure function S3 is related to
^û~k!û~q!û(2k2q!& by Fourier transformation. Using Eq
~12! it is easy to verify that the leading behavior is given
S3(r )52A3V

3(r /L). This confirms that the ansatz correct
reproduces the known result. One can use the ansat
Eq. ~11! and after some algebraic manipulations find
n-independent contribution:dS4 /dr}c3V

4 sgn(r)/L. This
gives rise to theur u behavior ofS4 . Thus we have provided
an analytic understanding of the structure functions
q52, 3, and 4.

We have studiedC3(k,q) numerically and checked tha
the results are consistent with our conjectured form; in F
3~a! we show ImC3(k,k) which decreases ask

23 while in Fig.
3~b! we display ImC3(k,q) for a fixedq which for moderate
k8s decreases ask22 as predicted by Eq.~12!.

NOISE WITHOUT CUTOFF

Consider the case in which there is no cutoff, i.e., t
noise variance has the functional formukub for all wave vec-
tors up to the ‘‘ultraviolet’’ cutoff. In this case, the syste
behaves differently according to whetherb is positive or
negative. Whenb is positive there is no multifractality, and
no region where in the von Karman–Howarth relation t
term proportional to viscosity can be neglected. In particu
in the caseb52, the existence of the fluctuation-dissipatio

FIG. 3. ~a! log10ImC3(k,k) vs log10k. The three-point function is
defined in the text. The dashed line corresponds to a slope of23 as
predicted by our ansatz in Eq.~12!. ~b! log10ImC3(k,q54D) vs
log10k whereD52p/L is the interval ink space. Note that the
slope of the dashed line is22. The slope of the graph deviates fro
22 ask becomes comparable toq as predicted by the ansatz.
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230 56F. HAYOT AND C. JAYAPRAKASH
theorem leads tôû(k)û(2k)&52D0 /n and the two terms
in Eq. ~5! cancel each other and yielddS3 /dr50. Whenb is
negative, multifractality is known to occur, from numeric
simulations, up to distances of the order of system size~lim-
ited by the average distance between shocks!, as we have
shown previously@6#. Next we comment on the behavior o
S2 and study analyticallyS3 for negativeb and compare
them to the case with a cutoff.

In contrast to the cutoff case in the earlier section, we
not know the dependence of the short-distance cutoff onn in
the limit of vanishing viscosity. Therefore energy balan
cannot be used to obtain the scaling exponent of the en
spectrum^û(k)û(2k)&, which in turn determinesS2(r ); in
this case as discussed in our earlier work we appeal to re
malization group calculations@10# and extrapolate naively
from theb positive (0,b,1.5) regime to negativeb. This
yields z2522b/3 and we haveS2(r );r22b/3. For b521
for example,S2(r );r 2/3, as pointed out in Ref.@2# as com-
pared with theur u behavior when there is a cutoff.

The leading behavior ofS3(r ) in the inertial range for
b,0 can be determined via the von Karman–Howarth re
tion @Eq. ~5!#: the viscous term can be neglected since sho
dominate the behavior of the velocity field. When there is
cutoff, the upper limit in the integrals in Eq.~5! is now
kmax52p/d, where d is the shock thickness. For21,b
,0, it is easy to show that

S3~r !}sgn~r !ur u2b. ~13!

When there is no cutoff, one finds forb521 that

S3~r !;r lnur u, ~14!

a result used by Chekhlov and Yakhot@3#. We emphasize
that when there is no cutoff in the noise there is no value
b for which we obtain strict linearity ofS3(r ).
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CONCLUSIONS

In summary, when the Burgers equation is driven with
stochastic noise at length scales larger than a cutoff, sho
dominate the behavior of the system and multifracta
@Sq(r )}r

zq with zq51# occurs in the inertial range for al
values of the exponentb that characterizes the form of th
noise variance. The case ofb52 was studied in Ref.@4#. We
have studied the general case analytically forq52, 3, and 4;
we have used knowledge of the scaling of the short-dista
cutoff, identified with the shock thickness, with the viscos
to argue for the linear behavior whenq52. The linearity of
S3(r ) follows directly from the noise term, while the linea
ity of S4 derives from the form of the three-point function
for which we have an ansatz in wave-vector space. Our a
lytical work is corroborated by numerical simulations. It
possible to examine Eq.~7! and analyze the behavior o
higher-order structure functions. One can plausibly arg
that the linear behavior inSn21 induces linear behavior in
the next order structure functionSn(r ), as we demonstrated
in the case ofS4 . We contrasted this linear behavior o
S2(r ) and S3(r ) with the corresponding behavior in th
model in the absence of a noise cutoff: In our previous w
@6# we had shown that multifractality occurred only for neg
tive values ofb and obtainedz2522b/3 numerically. Here
we have obtainedz3 analytically. The values ofz2 and z3
differ from the value of unity that occurs when there is
cutoff in the noise.
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